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1. Deriving Bayes’ Theorem
 

Bayes' theorem is a piece of mathematics.  It is called a theorem because it is derivable from a
simple definition in probability theory.  As a piece of mathematics,  it is not controversial.  Bayesianism,
on the other hand, is a controversial  philosophical theory in epistemology. It proposes that the
mathematics of probability theory can be put to work in explicating various concepts connected with
issues about evidence and confirmation.  

Before I make an observation, I assign a probability to the hypothesis H; this probability may
be high, medium, or low.  After I make the observation, thereby learning that some observation
statement O is true, I want to update the probability I assigned to H, to take account of what I have just
learned.  The probability that H has before the observation is called its prior probability; it is
represented by Pr(H).  The probability that H has in the light of the observation O is called its posterior
probability; it is represented by  the conditional probability Pr(H*O) (read this as “the probability of H,
given O”).  Bayes'  theorem shows how the prior and the posterior probability are related. 
 
The conditional probability Pr(A* B) is defined as follows: 
 

Pr(A*B) = Pr(A&B)/Pr(B.) 

This definition is  intuitive.  What is the probability that a card drawn at random from a standard deck is
a heart, given that it is red?  Well, the probability that it is a red heart is 1/4; the probability that it is red
is ½.  Thus, the answer is: ½.

By switching A's and B's with each other, it will also be true that 
 

Pr(B*A) = Pr(A&B)/Pr(A). 
 
These two expressions allow the probability of the conjunction (A&B) to be expressed in two different
ways: 
 

Pr(A&B) = Pr(A*B)Pr(B) = Pr(B*A)Pr(A). 
 
From this last equality, we can obtain Bayes' theorem: 
 

Pr(A*B) = Pr(B*A)Pr(A)/Pr(B). 



2

 
 

2. Bayesian Definitions of Confirmation and Disconfirmation

Let's rewrite Bayes'  theorem with some new letters.  We want to figure out what the
probability of a hypothesis H is in the light of observations O.  According to Bayes' theorem, this
conditional probability, Pr(H*O), can be expressed as follows: 

Pr(H*O) = Pr(O*H)Pr(H)/Pr(O). 

This expression can be rewritten as an equality between two ratios: 
 
(*) Pr(H*O)/Pr(H) = Pr(O*H)/Pr(O). 

When an observation O is obtained, it may have three different kinds of significance for the question of
whether the hypothesis H is true.  O may confirm H, O may disconfirm H, and
O may be evidentially irrelevant to H.   Bayesian theory says that each of these ideas can be
understood in terms of a relationship between the prior and posterior probabilities of H.  Here is the
Bayesian proposal: 
 
(1) O confirms H iff Pr(H*O) > Pr(H) 
 

O disconfirms H iff Pr(H*O) < Pr(H) 
 

O is evidentially irrelevant to H iff Pr(H*O) = Pr(H). 
 
Notice that these proposals have implications for whether the left-hand ratio in (*) is greater than, less
than, or equal to unity.  Thus, if O confirms H, Pr(O*H)/Pr(O) will be greater than unity. 
Let's consider some implications of this.  First, suppose that H deductively implies O.  If so, 
Pr(O*H)=1.  In this case, notice that Pr(O*H)/Pr(O) can't be less than unity.  It follows via (*) that
Pr(H*O)/Pr(H) can't be less than unity.  This makes sense of the following idea:  when you deduce an
observational prediction from a hypothesis, and the prediction comes true, this result 
can't disconfirm the hypothesis.  The hypothesis may go up in probability or it may stay the same, but it
can't decline in probability. 
 

If  Pr(O*H)=1,  how  could the observation that O is true fail to confirm the hypothesis?  This
will happen if Pr(O) = 1.  That is,  if  you  were certain  that  O  would  be  true  before  you  made the
observation, the fact that the observation  comes  true  does  not confirm  H.  If  H deductively implies
O and the truth of O is to confirm H, then Pr(O)<1.   True  predictions that are totally unsurprising fail
to confirm. 
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In thinking about the idea of confirmation, there is a simple fact that you want to bear clearly in

mind.   An  observation  may confirm  a  hypothesis,  even though the hypothesis is still very improbable
in the light of the observation.   Suppose  Pr(H*O)  = 1/1,000  and  Pr(H) = 1/1,000,000.  In this case,
the observation increased the probability of the hypothesis a thousand fold.  Even so, H remains very
improbable.   Bayesians use the term “confirm” to mean “probability raising;” a “confirmed” hypothesis
may not be worthy of  belief.   

3. Comparing Posterior Probabilities
 

According to Bayesianism, confirmation is a “diachronic” relation -- it involves a
before-and-after comparison.  However, we sometimes are interested in making a distinct, synchronic,
comparison -- we want to say whether an observation makes  one  hypothesis  more  probable  than 
another hypothesis.  Here we are comparing two posterior probabilities -- Pr(H1 * O) and Pr(H2 *
O).  Two applications of Bayes’ theorem yields

Pr(H1*O) = Pr(O*H1)Pr(H1)/Pr(O). 

Pr(H2*O) = Pr(O*H2)Pr(H2)/Pr(O). 
 
From these two statements, we obtain:
 
(2) Pr(H1*O) > Pr(H2*O) iff  Pr(O*H1)Pr(H1) >  Pr(O*H2)Pr(H2). 

Which hypothesis has the higher posterior probability depends on two considerations -- the prior
probabilities of the hypotheses, and the probabilities that each hypothesis confers on the observations.

It follows from (2) that H1 might have the higher posterior probability even though
H1 says that the observations were very improbable, whereas H2 says that they were very probable. 
It also is possible for O to raise the probability of H1 (a diachronic result), even though, synchronically, 
Pr(H1*O) <  Pr(H2*O).

Here is a case that illustrates these possibilities:  Suppose I sample three balls with replacement
from an urn.  That is, I take a ball out, note its color, and then return it to the urn, which I then shake; I
then draw another.  Suppose my  observation is that the three balls I've drawn are all green.  That is,
the statement O, which I have learned to be true by observation, is "the three sampled balls are green."  
There are two hypotheses I want to consider.  These are: 

H1 :  All the balls in the urn are green. 
 H2 :  50% of the balls in the urn are green. 
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We want to answer two separate questions. Does O makes H1 more probable than H2?  And does O
make H1 more probable than it was before?

To answer these questions, I need to provide more details.  To use Bayes' Theorem, we need
to make sense of the prior probabilities of H1 and H2.  That is, we need to be able to say how
probable it is that the urn had one composition rather than another, before the sampling from the urn
was performed.  Let's imagine that the urn was composed by the following process.  There were a
hundred buckets, each containing balls.  A bucket was chosen at random and then dumped into the urn. 
In bucket #1, all the balls are green; in buckets 2 through 100, half the balls are green. Given the
process just described, we can assign prior probabilities as follows: 
 

Pr(H1) = 1/100    Pr(H2) = 99/100 
 
The next step is to consider how probable the observation O would have been, if H1 had been true. 
Clearly, if all the balls in the urn are green, then the probability that the three sampled balls should have
been green is unity.  On the other hand, if H2 were true, then the probability of obtaining three green
balls in three draws is (½)(½)(½) = 1/8.  Thus,  the probability of the observation, conditional on each
of the two hypotheses, is: 
 

Pr(O * H1) = 1  Pr(O * H2)= 1/8. 
 
The  last probability we need to figure out is the "unconditioned probability of the observations" 
-- the quantity Pr(O).  But how can we figure out how  probable it was  that  three  green  balls  should 
have  been  drawn without knowing  which bucket was the one  that  filled  the urn?  Well, we know
that there was a 1/100 chance that the urn was filled from bucket #1; in that case  the  probability  that
the three  sampled  balls  should have been green would be 1.  On the other hand, there is a 99/100
chance that the urn was filled from one  of  the other  ninety-nine  buckets,  in  which  case  the
probability  that the three balls should have been green would have been 1/8.  The probability of O
takes both  these  possibilities  into account, as follows: 
 

Pr(O) = Pr(O * H1)Pr(H1) + Pr(O * H2)Pr(H2) 
 

          =  (1)(1/100) + (1/8)(99/100) . 0.12.  

This is an approximate value for Pr(O). 
 

We now can use Pr(H1), Pr(O * H1), and Pr(O) to compute Pr(H1 * O), by Bayes's theorem: 
 

    Pr(H1 * O) = Pr(O * H1)Pr(H1)/Pr(O)       
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           =   (1)(1/100) / (0.12)     

So Pr(H1 * O) is about 8/100. 
 

Notice that the observation makes H1 far more probable than it was initially.   H1 enjoyed  an 
eight-fold  increase  in  its probability.  Yet, this fact of confirmation does not mean that H1 became
very probable.  Indeed, it did not do so:  Pr(H1 * O) is far less than Pr(H2 * O); 8/100 < 92/100. 

According to proposition (2), there are two factors that affect whether one hypothesis will be
more probable in the light of the evidence than another.  First, there is the question of how good a job
the hypotheses do in predicting the evidence at hand.  This issue is represented by the quantities Pr(O
*H1) and  Pr(O *H2).  Second, there is the question of how plausible the hypotheses were before the
present evidence was obtained; this is represented by the quantities Pr(H1) and Pr(H2).  In our
example, H1 gets a high mark on the first consideration, but a low one on the second.

4. Likelihood 
 

Some terminology:  “Pr(O *H)” is sometimes called the “likelihood” of H.  This is a technical
usage. Don’t confuse the likelihood of a hypothesis with its probability.  Pr(O*H) and Pr(H*O) can
have very different values, as the urn example illustrates.

I so far have defined two ideas about evidence in probabilistic terms.  First, there  was  the 
before-and-after  notion  that I called  confirmation, described in proposition (1).   Second,  there  was 
a  comparison of the probabilities of two hypotheses in the light of the same  evidence, described in
proposition (2) . Now  it's  time for a third.  We may ask whether an observation supports one
hypothesis  better than another.   Here we're not interested in  whether the one  hypothesis  has a higher
prior probability than the other; we want to isolate what the impact of the observation is.  I suggest that
this idea can  be  understood as  follows: one hypothesis is better supported by an observation than
another is if and only if the  first  hypothesis  makes  the observation  more  probable  than  the other
hypothesis does:
 
(3) H1 is better supported than H2 by O iff  Pr(O*H1) > Pr(O*H2). 
 
Here we have the idea that differential support is measured by likelihood.  If one hypothesis says that
what I observed was to be expected, whereas the other hypothesis says that what I observed was very
improbable, it is the first that is better supported by the observation.

5. An Exercise



6

Here is a problem that you should be able to solve by reasoning in a way parallel to the urn
problem: 
 
Suppose that a disease is found in 1/100 people in the US.  We select a US individual at random and
then give the  individual  a diagnostic  test,  which  is  90%  reliable, by which I mean the following:  if 
an individual has the disease, the probability that the test will come out positive is 0.9, and if an
individual does not have the disease, the probability is 0.9 that the test will come out negative.  Suppose
the test comes out positive. What is the probability that the individual has the disease, given this positive
test result?   How does this probability compare with the probability that the individual does not have
the disease?  Calculate the relevant quantities and then plug them into Bayes’ theorem.

Psychologists have found that people often do better at problems like this when they formulate
them as problems about frequencies in a population of known size.  So suppose that the population
contains 1,000  people, and that 10 of them have the disease, while 990 do not.   What would happen
if you gave the test to all 1,000 people?   Fill in the following 2-by-2 table with the approximate
numbers you’d expect to find in each cell, given that the test is 90% reliable:

###################
###########

10 have the disease 990 do not have the disease

number of positive outcomes

number of negative outcomes

Now suppose someone in the population has a positive test result.  What is the probability that they
have the disease?  

Two observations: (1) Notice that I described the reliability of the test procedure by describing
conditional probabilities of the form Pr(±test * ±disease).  These numbers do not settle
the values of probabilities of the form Pr(±disease * ±test).  This illustrates how likelihood and
posterior probabilities are different.  (2) Although it is useful in this problem to think of probabilities in
terms of  actual frequencies, it isn’t true that the probability if an event and its actual frequency must be
the same.  A fair coin can be tossed an odd number of times and then destroyed.  Still, it sometimes
makes problems easier to solve if you think of probabilities in terms of the (approximate) actual
frequencies you’d expect to find.

6. The Dispute About Bayesianism

Philosophers and statisticians who criticize Bayesianism do so mainly because they believe that
it often makes no sense to talk about the prior probability of hypotheses.  In our urn example, it did
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make sense to talk about the prior probabilities of the hypotheses.  The reason was that we viewed the
two hypotheses H1 and H2 as possible outcomes of a chance process.  I said that the urn was filled by
choosing at random from among a hundred buckets.  It was on the basis of this story that we assigned
priors in the way we did.  

Consider the fact that many of the hypotheses that scientists wish to test do not describe
possible outcomes of a chance process.  For example, take Newton's law of gravitation (G).  It makes
sense to talk about what G predicts about observations.  Perhaps G says that some observations are
probable while others are improbable. This will allow us to make sense of the likelihood of G. 
Pr(O*G) will make sense.  However, what is the probability that Newton's law is true?  In particular,
we need to make sense of the idea that G has a prior probability.  Before we do any observational
tests of the theory, what probability should we assign to it?

Suppose God had chosen the laws that govern our universe by sampling balls from an urn.  On
each ball is written a set of laws.  If Newton's law was written on just one ball and there were 1000 in
the urn, then the prior probability of the law would be 1/1,000.  However,  no one believes this story
about the process that gave our universe the laws it possesses.  In the absence of any alternative and
plausible process model, critics of Bayesianism decline to assign probabilities to Newton's law.

Bayesians have replies to this criticism.  One is to go the subjective route.  The idea is to think
of probabilities as describing an agent's degree of belief.  If an agent has some degree of belief in
Newton's law before the evidence is assembled, this will determine what his or her prior probability is. 
The trouble with this reply is that different agents may have different degrees of confidence in the
hypothesis in question.  If probabilities merely describe subjective degrees of confidence, one won't be
able to say which assignment of probabilities is correct and which is incorrect.

To this, Bayesians often reply with the "swamping of priors" argument.  They point out that it
often doesn't matter what prior probabilities one assigns.  Once a reasonable amount of evidence
becomes available, people will end up assigning nearly the same posterior probabilities, even if they
started out with very different priors.  Critics sometimes reply that the swamping of priors argument
does not show that the idea of  prior probabilities makes sense. 

Another Bayesian strategy is to try to show how objectively correct  prior probabilities can be
assigned even though one has  no information about what processes (if any) influence which hypothesis
is true.  Bayesians who go this route try  to formulate a plausible version of  the Principle of
Indifference (PI).  The PI says, roughly, that if you have no reason to assign H1 and H2 different
probabilities, then you should assign them the same probability.  Stated with a bit more generality, the
PI says that if you have no information that would allow you to say which of n exclusive and exhaustive
options will come true, you should assign each a probability of 1/n.  This principle, if correct, would
allow one to obtain knowledge of probabilities from the fact that one is ignorant.
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The problem with the  PI is that  possibilities can be sliced up in different ways, and these
different ways of dividing the pie generate probability assignments that are incompatible with each other. 
If you don't know anything about the color of my favorite sweater, should you assign equal probabilities
to the four options [Green, Blue, Red, Black] or equal probabilities to the five options [Light Green,
Dark Green, Blue,  Red, Black]?  

A quantitative example exhibits the same problem.  Suppose you know that some particular
object has a length (L) somewhere between 2 and 4 meters.  Applying the PI, you might reason that 

(A) Pr(L is between 2 and 3) = Pr(L is between 3 and 4).

But now consider the value of the quantity L2.  L2 is somewhere between 4 and 16.  If you apply the PI
to the range of values that L2 might take, you might end up saying that 

     Pr(L2 is between 4 and 10) = Pr(L2 is between 10 and 16).  

But this assignment of probabilities to L2 entails something about the probabilities of  L's values.  It
entails that 

(B) Pr(L is between 2 and s10) = Pr(L is between s10 and 4).   

Note that (A) and (B) are incompatible.  Why should one apply the PI to L rather than to L2?
In fairness, I should point out that there are Bayesians who try to refine the PI so that it doesn't generate
contradictions.

In terms of the concepts we defined before, critics of Bayesianism will not accept the
Bayesian definition of confirmation and disconfirmation, though they may be quite happy to
talk about the likelihoods of hypotheses as measures of how well supported they are.


